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ORGANOSILANE POLYMERS, V:

HYDROSILYL-MODIFIED POLYCARBOSILANE

PRECURSORS FOR SILICON CARBIDE

INTRODUCTION

Several organosilicon polymer approaches to ceramic compositions have
recently been developed, including branched polycarbosilane precursors for sili-
con carbide.1 These thermoplastic polymers were prepared in high yield through
potassium metal dechlorinations of mixtures of vinylic or chloromethyl (ClCH2-)
chlorosilanes with other methylchlorosilanes in tetrahydrofuran solvent.
Monomer mixtures were selected to maximize formation of backbone 8SiCO bonds,
while maintaining high synthetic yield, tractability, and high yields of silicon
carbide ceramic compositions on unconfined pyrolysis. A typical preparation as

0.85 Me3SiCl K/rHF 12000 O sic"
0.3 Me2SiCl2  Polycarbosilane
1.0 CH2CHSiMeCl2  97.3% yield as 31.4%

soluble solid

shown yields a polymer which, in unfractionated form, provides a 31.4% yield of

SiC ceramic composition on pyrolysis.

RESULTS AND DISCUSSION

The substitution of MeSiHCl2 for Me2SiCl2 in the above preparation pro-
vides a somewhat lower yield of tractable polymer, which in turn yields
significantly more SiC composition on pyrolysis.

0.85 Me3SiCl K/rHF
0.3 MeSiHCl2  -/ * Hydrosilyl-modified 12000 SiC"
1.6 CH2=CHSiMeCl2  polycarbosilane 51.7%

74.6% yield, soluble solid
8.7% yield, insoluble solid

Improved ceramic yields were also obtained when MeSiHCl2 was substi-
tuted for Me2SiCl2 in other copolymerizations.

For example, a linear copolymer prepared from Me2SiCl2/CH2=CHSiMe3
2

provides a very low ceramic

"Si" Me2 SiCI 2  MeSiHCl 2"Sic$$, 5900 SiMe2CH CH 4-OSil H2=CHSIMe3 K/TiHF 4

0. 3 1 K/THF K/THF
SiMe3

Copolymer 1200 4 "SiC"
28.5%



ORGANOSILANE POLYMERS, V 2

yield after pyrolysis, while a similar polymer prepared with MeSiHCI2/CH:C SiMe 3
provides a significantly higher ceramic yield. Equivalent results are obtained
from coplymers prepared from Me2SiCl2 or MeSiHC12 and CH2=CHSiMe2Cl, or from
Me2SIC-2 or MeSiHCl2 and CH2=CHSiMe2CH2Cl. In the latter comparison, a 2/1

"SC 00Me 2SiC12  MeSiHC12

"sic" , 7000 Copolymer , CH2=CHSiMe2Cl

3.0% K/rHF K/THF

Copolymer "Sic"
31.0%

2IS ~ Coo Me 2SiI 2 .5MeSiHCI2

S. 680o Copolymer e2SiCl 2  CH2=CHSiMe2CH2Cl1 KrHF
0.3% K/THF K/THF

Copolymer 12000 "SiC"

27.8%

molar ratio of Me2SiCl2/CH2=CHSiMe2CH2Cl was used, with a 1.5/1 molar ratio of
MeSiHC12/CH2=CHSiMe2CH2Cl.

Since the backbone branching in these polycarbosilane types is respon-
sible for their effective pyrolytic conversion to SiC,1 it appears that MeSiHCl2
provides such branching, either by forming trifunctional MeSiO units during
synthesis (with loss of H-groups) or during pyrolysis, by reactions of difunc-
tional -MeSiH- groups.

It should be noted that the polymeric units derived from CH2=CHSiMe2Cl
or CH2=CHSiMe 2CH2CI provide backbone branching at carbon, rather than at sili-
con, and do not contribute to ceramic yield, while cH2=CHSiMeCl2 provides units
with backbone branching at silicon which do contribute to ceramic yield.

K/rHFCH2=CHSiMe2Cl -' CH2Ci-e 2 P
-KCI

II K/THFCH2=O-ISiMe2CH2Cl -----. tCH2CH.'1me2CH2)-

CH2=CiSiMeCI2  K/THF tu"2LHZ I Met.
-KC1



ORGANOSILANE POLYMERS, V 3

Model reactions suggest that the majority of the hydrosilyl groups are
lost in the preparative step. Reaction of 2/1 Me3SiCl/eSiHCl2 with K/THF pro-
vides a low yield of the tetrasilane, MeSi(SiMe3 )3 , as the major volatile pro-
duct, rather than MeSiH(SiMe3)2. Proton NMR analyses of the MeSiHC12-derived
copolymers show that about 20% of the hydrosilyl groups remain, while 80% are

Me Me

K/THF I I
MeSiHCl2 - .- -Si- + -SI-

-KCl I I
H 20% 80%

converted to trifunctional branching units. The degree of loss of hydrosilyl
functionality may be dependent on the active metal, since lithium causes
complete loss,4 while sodium retains most of the hydrosilyl groups, 5 in respec-
tive reactions with Me2SiHCI.

HSiMe2SiMe2H Na Me2SiHCl Li (SiMe2 )6
THF

POLYMER PROPERTIES

The soluble solid from dechlorination of 0.85/0.3/1.0 Me3SiCl/
MeSiHCl 2 /CH2=CHSiMeCl 2 is a colorless resin which thermosets before melting,
remaining solid to 3000, at which point pyrolytic degradation commences. TGA
Scans of that polymer (Figure I) and the corresponding 0.85/0.3/1.0 Me3SiCl/
Me2SiCl2/CH2=CHSiMeCl2 polymer (Figure II) also demonstrate the higher ceramic
yield from the MeSiHCl2-derived polymer. The TGA yield figures are somewhat
lower than those obtained from bulk pyrolyses, probably due to the higher TGA
heating rate and the small TGA sample size.

A series of polymers were prepared with relatively lower contents of
units derived from MeSiHCl2, as in 0.85/0.3/0.3/1.0, 0.85/0.2/0.2/1.0, and
0.85/0.3/0.1/1.0 polymers from Me3SiClIe 2SiCl 2 MeSiHCl2/CH2=CHSiMeCl2 monomer
mixtures, to provide materials with better melt properties. The latter two
polymers were solids at room temperature, remained fluid after melting to 3000,
and were melt-spun to preceramic polycarbosilane fibers.

6

Fractionation of the 0.85/0.3/1.0 terpolymer from Me3SiCl/MeSiHCI2/
CH2=CHSiMeCl2 from THF into nonsolvent acetone provided high and low molecular
weight fractions in approximately equal amounts.

The high molecular weight fraction provided 53.5% of SiC ceramic com-
position on pyrolysis, while the low molecular weight fraction yielded 43.2%.
Actual molecular weights were not determined, although the polymers are amenable
to analysis by gel permeation chromatography.

I



ORGANOSILANE POLYMERS, V 4

These polymers do not provide exact elemental analyses7 due to oxygen
incorporation during hydrolytic termination, loss of hydrogen from "SiH groups,
and problems in total combustion of preceramic materials.

The major-polymer forming reactions are disilylation of vinyl groups,
creation of silmethylene groups, or formation of silicon-silicon bonds. Model

Disilylation: 29SiCl + CH2=CHSiN -_ K P uSiCH2CH(Siu)2
-KC1

Silmethylene: 6SiCH2Cl + mSiCl K *SiCH2Si*-KC1

Si-Si Bonds: 2=SiCl K "SiSi m

-KCl

reactions' have shown that formation of OSi-CO bonds by the first two reactions
is genererally favored, and instrumental analyses (IR, NMR, IV) are consistent
with that fact.

CONCLUSIONS

The use of low levels of MeSiHC12 in modifying potassium-derived poly-
carbosilanes provides significant improvements in yields and qualities of SIC
ceramic compositions obtained therefrom. Most of the MeSiHC12 reacts to form
trifunctional MeSiu groups, with about 20% being incorporated as difunctional
-MeSiH- units. Residual hydrosilyl groups provide proportionate in situ cross-
linking during pyrolysis.

EXPERIMENTAL

All chlorosilanes were freshly distilled before use. THF was reagent
grade, dried over Linde 4A molecular sieves. K Metal was purchased as practical
grade ingots; all K metal transfers were made under nitrogen in a dry box. All
reactions (preparations and pyrolyses) were run under argon or nitrogen.
Routine NMwR spectra were recorded on a Perkin-Elmer R24A spectrometer - VPC
Analyses were run on a Hewlett-Packard 5840A gas chromatograph. Pyrolyses up to
7000 were run in quartz reactors in a Lindberg 54242 tube furnace and those up
to 12000 were run in an alumina reactor in a Lindberg 54233 tube furnace. Both
furnaces have programmable controllers, which allow attendent-free operation
from charging to removal of products. Conversions to SiC compositions were con-
firmed by x-ray diffraction.

Reaction of 1/1 MeSiHC1 2 /CH2 =CHSiMe 3 with K/THF

In a 11 3N RB flask were combined 31.6g (0.81 mol) of K metal and
422.9g anhydrous THF. Flask was fitted with mechanical stirrer (stainless steel
blade), thermometer, heating mantle, addition funnel, and nitrogen flow valves.
Mixture was heated to reflux (66'), melting the K, and addition of a mixture of
38.5g (0.39 mol) of CH2 =CHSiMe3 and 44.3g (0.39 mol) of MeSiHCI 2 begun and

iI



ORGANOSILANE POLYMERS, V 5

completed in 40 min., lowering the reflux temperature to 640. Heating was
resumed at reflux for 5-1/2 hr, followed by cooling on wet ice bath, termination
with 6.5g H20/48.6g THF solution (dropwise addition), and neutralization with
6.4g conc. HCI. Filtration, trituration, and dissolution of the salts (H20)
left a trace amount of insoluble solid product. The THF reaction solution and
trituration solvent were dried over MgS04, filtered, and vacuum distilled,
yielding 0.38g up to 350/1.0 mm plus 24.36g (44%) of heavies. VPC Analysis
suggested 20.8g (54%) of CH2=CHSiMe3 was unreacted and was removed by stripping.
Pyrolysis of the heavies to 12000 in two steps provided 28.5% of SiC com-
position, showing a weak X-ray diffraction pattern for microcrystalline S-SiC. 8

A similar copolymer prepared from Me2SiCl2/CH2=CHSiMe3,1,
2 provided

only 0.3% ceramic on pyrolysis to only 590 .

Reaction of 0.85/0.3/1.0 Me3SiCl/ weSiHCl2/CH2=CHSiMeCl2 with K/THF

The procedure above was repeated using a 21 flask, 106.4g (2.72 mols)
of K metal, 807.lg of tetrahydrofuran, and a mixture of 69.7g (0.64 mol) of
Me3SiCl, 25.9g (0.225 mol) of MeSiHC12 , and 105.9g (0.75 mol) of CH2=CHSiMeCl2.
Workup as above yielded 8.7% of insoluble solid product, 9.5% of volatile pro-
ducts, b.p. up to 650/0.5 mm, and 74.6% of soluble solid product. Pyrolysis of
the latter to 12000 in two steps yielded 51.7% of SiC composition having the
correct x-ray diffraction pattern for microcrystalline B-SiC.

Analytical: % C % H % Si % Cl % 0
Calc d: 48.33 10.22 41.45 0 0
Found: 45.48 9.10 39.63 0.044 5.65
(% 0 by difference)

The soluble solid (analysis above) was submitted to Albany Inter-
national Research Company for spin screening. Under melt spinning conditions,
it crosslinked to an insoluble solid.

The procedure was repeated to prepare polymers from 0.85/0.3/0.3/1.0,
0.85/0.2/0.2/1.0, and 0.85/0.3/0.1/1.0 ratios of Me3SiCl/e 2SiCl2/eSiHC12/
CH2=CHSiMeCl2. The latter two polymers were successfully melt-spun to precera-
mic fibers. The respective bulk pyrolysis yields of SiC ceramic compositions
were 41.6%, 40.8%, and 35.5%.

i I,
I!
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FIGURES

Figure I TGA of Terpolymer from
0.85/0.3/1.0 Me3 SiC1/ MeSiHCL2/CH2=CHSiMeCI2

Figure II TGA Scan of Terpolymer from
0.85/0.3/1.0 Me3 SiC1/Me 2 SiC1 2 /CH2 =CHSiMeC1 2
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